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Recently, Barrar and Loeb [1] filled a gap in the theory of varisolvent
families for the case that the degree of solvency is 1, 2, or 3. This partially
answers the question whether the best approximation in the sense of
Chebyshev alternates [2]. In this note we prove that in any family of vari­
solvent functions the best approximation alternates, if it has the maximal
degree of solvency.

2

Let X be a compact interval on the real line and let C(X) be endowed
with the topology induced by the Chebyshev norm. F is assumed to be a
function unisolvent of variable degree [5]. Denote the degree of F(a*, x) by
m = m(a*). In the definition of solvency, to each set of m distinct points
Xl' X 2 , .•• , Xm E X a mapping from an open set of Rm into the family F C C(X)
is required, which associates to (YI , Y2 ,... , Ym) an element F(a, x) such that

F(a, Xi) = Yi , i = 1,2,... , m. (1)

Referring to this mapping, we define the following:

DEFINITION 1. Let F be varisolvent. F(a*, x) is a normal element in F,
if the defining mapping (YI , Y2 ,... , Ym) ----+ F(a, x) is continuous for (at least)
one set of distinct points Xl' ... ' Xm E X.

The degree of solvency is an upper semicontinuous function in F [5,
Theorem 2]. Thus, it is constant in a neighborhood of a function with
maximal degree. Therefore, in this case normality follows from Theorem 1.
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THEOREM 1. Let F be a family unisolvent of variable degree. If mea) is
continuous at F(a*, x), then F(a*, x) is a normal element in F

Proof Let F(a, x) be a solution of (1) with m = m(a*)
IF(a*, Xi) - Yi i < o. For sufficiently small 0 we have mea) = m(a*) and
Property Z implies uniqueness of the solution.1 Now, it follows from solvency
at F(a, x) that the defining mapping for F(a*, x) is continuous at
y = (F(a, Xl), F(a, X2),"" F(a, x m)).

3

THEOREM 2. If F(a*, x) is a normal element in a family of functions
unisolvent of variable degree, then for every E > 0 there is an element F(a,
in F such that

F(a, x) ?' F(a*, x)

and 0 < II F(a, .) - F(a*, ')[1 < E.

for XE X, (2)

Proof Let F(a*, x) have degree m = m(a*). Assume that Xl , X2 , ... , X m

are chosen according to Definition 1. Let 11 ,/2 ,,,,, 1m be open disjoint
intervals such that the closure of U;;'=l I" covers X, and x" E I" , k = 1,2,... , m.
Consider the simplex in m-space

I m \S = l(zl' Z2 , ... , zm) E Rm; Z" ?' 0 for k = 1,2,... , m and L z" = 1 .
{ k=l

Set 0 = to(a*, E, Xl'"'' xm ). By virtue of the solvency property for
Z E S there exists a function in F with

k = 1,2,... , m, (4)

that, for convenience will be written as F(z, x). We introduce m subsets

Ale = {z E S; inf{F(z, x) - F(8*, x); X E I,,} :;?o O}, k = 1,2,..., m. (5)

From the continuity of the mapping z ->0- F(z, -) it follows that the sets
are closed. Let d be the usual metric in m-space. Set

k = 1,2, ... , m.

1 Hobby and Rice [3] used another definition of solvency, which is not equivalent. In
that case every element would be normal.
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The proof of the theorem is complete, if we verify that

mn A k =1= 0
k=1

holds. If (6) is not true, then we have for each Z E: S:

m

p(z) = L Pk(Z) > O.
k=1

Consequently, the mapping

(6)

!j;:S----'>-S, !j;(z) = [ljp(z)](pl(z), P2(Z)"", Pm(z)) (7)

is continuous. By virtue of Brouwer's fixed point theorem, there is a point
Z E: S satisfying !j;(z) = Z. By the varisolvency property F(z, x) - F(a*, x)
has at most m - I zeros in X and there is no zero in at least one subinterval
I j . This implies F(z, Xj) =1= F(a*, Xj) and

Zj =1= O.

On the other hand, the choice of I j yields

piz) = 0,

contradicting z = !j;(z). Hence, the proof is completed.
We note that the subsets A k satisfy the conditions of the theorem in

[4, Section 2]. The equivalence of that theorem to Brouwer's fixed point
theorem may be verified by considering the mapping !j;.

By the same arguments as in [1] we conclude from Theorem 2 that F(a*, x)
is not a best approximation of f(x) = F(a*, x) + teo From this, we obtain
the following:

COROLLARY 3. rr F(a*, x) is a normal element in F, then for every e > 0
there is afunction F(a, x) in F such that

o < F(a, x) - F(a*, x) < e. (8)

Since we have the strict inequality in (8), this improves Theorem 2.
I thank Professor Dr. G. Meinardus for calling my attention to this

subject.
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